
なぜ古典論理に計算的意味を与えるのか
―SLCにもとづく Dummett的観点の拡張の試み―

Why giving computational interpretation to classical logic?
-an attempt at extending Dummett’s conception of meaning based on SLC-

角田健太郎
Abstract

Recently, computational interpretations of propositional logical calculi
have been extended from intuitionistic logic to classical logic. That seems
to prompt us to rethink Dummett’s notion of meaning and make it more
generous so that not only intuitionistic logic but also (at least the elementary
parts of) classical logic could be made sense of. For this purpose, it would
be indispensable to introduce one new technical notion from the semantics of
programming languages: the notion of continuation, which designates, roughly
speaking, ‘that part of the computational process that has not been executed
yet’. I conclude this note by firstly surveying the computational system named
SLC (symmetric lambda calculus) developed by Filinski and Asai et al., in
which the notion of continuation is fully made use of, and secondly proposing
several important improvements that resulted from my own research which is
still under development.

1 研究テーマ
論理学とはすなわち妥当な推論形式の研究であるという見方は、哲学者た
ちの間に広く共有されている。つまり論理学とは、モデル等の道具立てによっ
て一定の妥当性の基準を据えて、どのような推論形式が妥当であるのかを述べ
る研究であるという見方である。実際それは間違いではないであろう。しかし
近年ますます進展しているのは、そうした推論形式の妥当性を述べることに
留まらないような、より詳細な、論理的推論の各ステップに含まれている計算
的な推論的原理の解明である。例えば BHK解釈は、実効的演算や幾何学的作
図などに典型的に含まれる構成 (construction)の概念―これはすなわち、素材
となるものの構造を常に保存する形で新たな対象を作り出すような対象形成
手続きを特徴づける概念である―によって直観主義論理の各推論規則を特徴
づけることができ、そして直観主義論理の証明プロセスにより導出された論
理式は「その論理式が諸仮定からどのような実効的手続きを経て導出された
か」という証明の構造をその表現内容とすると解釈できることを明らかにした
[7]。また、この BHK解釈のひとつの洗練と見ることができる Curry-Howard
対応は―以下で詳しく説明するように―直観主義論理の証明プロセスが λ式
と呼ばれるコンピュータプログラムの抽象的表現の構築プロセスと対応付け
られることを明らかにした [1][6]。

1

そうした近年の論理学の展開は、哲学にどういうことを教えるだろうか。す
でにこうした情勢と結びついている哲学のひとつとして、Dummettの直観主
義哲学がある。彼は 1973年の論文 [2][12]で、命題の意味内容はその命題の
「使い方・使用 (use)」に訴えて説明されるべきであり、そして BHK解釈は直
観主義論理に対して「使い方」による意味説明を与えていると論じた。ここ
で彼は直観主義論理による証明こそが命題の意味の源泉であると主張し、他
方で古典論理によって証明された命題は正当化を欠いた無意味な命題である
とする過激な主張を行った。というのも、任意の式 Aについて A ∨ ¬Aが無
仮定で成り立つ古典論理では、どの選言文も選言肢の少なくとも一方が実効
的手続きを経た上で導出されるという BHK解釈の条件が崩れている―つまり
古典論理は「使い方」による説明を超えている―と彼は考えたからである。

Dummettは、BHK解釈の観点が論理結合子延いては言語の意味の問題でも
あることを深く明らかにした点で参考になる。しかし、すでに様々な応用が行
われている数学の定理を導出した古典論理を一切無意味として切り捨ててし
まうのは奇異だと思われる。直観主義論理の証明プロセスが含む実効的手続
きを経る導出の概念には帰着できずとも、しかし依然としてある種の合理化
と言えるような部分が古典論理の証明プロセスには含まれており、Dummett
はこれを見過ごしてしまっているのではなかろうか。本研究は、古典論理に特
有なこの合理化概念を究明し古典論理的命題の意味を与え、そして Dummett
の哲学の (忠実ではないかもしれないが)ひとつの健全な発展の方向として古
典論理ベースの哲学を展開することをテーマとしている。

2 研究の背景・先行研究
Dummettが指摘するような古典論理のいわゆる非構成性を引き受けた上で、
しかしながら近年の古典論理研究の進展の中では、古典論理の証明プロセス
は導出される論理式の内容に対してある本質的な関わりを持っているという
ことが明らかとなってきた。参考となるのは Curry-Howard対応の古典論理へ
の拡張の研究である。この研究は、古典論理の証明プロセスが、計算の順序を
制御するある特別な演算子を含むようなプログラムの構築プロセスと対応付
けられることを明らかにした。以下ではこのことを順を追って説明する。なお
以下では紙幅の節約のため直観主義論理を ILと呼び、古典論理を CLと呼ぶ。
出発点となるのは、Gentzenの 1935年の論文 [4]である。Gentzenはここで

ILの体系として直観主義自然演繹 NJを、CLの体系として古典自然演繹 NK
を与えた。Gentzenの体系では、ある論理式が証明可能であるとき、かつその
時に限って、推論プロセスの 1ステップを表現する図式を有限木構造状に連鎖
させた証明図と呼ばれる図式が構成可能である。例えば ILで証明可能ではな

2

く、かつCLで証明可能なパースの法則と呼ばれる論理式 ((A ⊃ B) ⊃ A) ⊃ A

をとろう。パースの法則を導出する NK-証明図は例えば次の形をしている。1

公理
A ⊃ ⋏⊢A ⊃ ⋏

公理
(A ⊃ B) ⊃ A⊢ (A ⊃ B) ⊃ A

公理
A ⊃ ⋏⊢A ⊃ ⋏ 公理

A⊢A ⊃除去則
A ⊃ ⋏,A⊢⋏ 爆発則
A ⊃ ⋏,A⊢B

⊃導入則
A ⊃ ⋏⊢A ⊃ B

⊃除去則
(A ⊃ B) ⊃ A,A ⊃ ⋏⊢A

⊃除去則
(A ⊃ B) ⊃ A,A ⊃ ⋏⊢⋏

⊃導入則
(A ⊃ B) ⊃ A⊢ (A ⊃ ⋏) ⊃ ⋏ 二重否定除去則
(A ⊃ B) ⊃ A⊢A

⊃導入則⊢ ((A ⊃ B) ⊃ A) ⊃ A

「A1, ...,An ⊢ B」(ただし 0 ≤ n)という表現はシーケントと呼ばれ、命題の集
合「A1, ...,An」を構成するすべての命題が仮定されたとき「B」という命題
が結論されるという仮言的判断を意味する。各規則は、「水平線の上の判断が
成り立つとき、水平線の横に表示された推論規則によって水平線の下の判断
が成り立つ」という意味である。NJと NKの違いは、推論規則に二重否定除
去則を前者は含まない一方で後者は含む、という点のみにある。つまりパー
スの法則の NK-証明図中の二重否定除去則より上の証明図は NK-証明図であ
りかつ NJ-証明図である。ポイントは、シーケントたちが形成する木構造に
よって、証明図の一番下のシーケント (終式と呼ばれる)に対しては、それが
表す判断へと至る証明プロセスが与えられるということである。
さて 1960年代に明らかとなったのは、NJと型付き λ計算と呼ばれるプロ
グラム構築体系との間に、ある同型性が与えられるという事実である [1][6]。
この対応は Curry-Howard対応 (以下 CH対応)と呼ばれる。
まず λ計算とは、計算機科学・情報科学の分野において計算機やプログラ
ムの一般的性質に関する理論的研究を行うために、プログラムの構築とその
実行という概念を記号列表現の形成とそれに対する変形操作という観点から
抽象化した形式体系である。特に、各 λ式に対して型の概念が与えられてい
る λ計算が型付き λ計算と呼ばれる。型付き λ計算の基本的な定義は次の通
りである。変数記号として「x, y, z, ...」、束縛演算子として「λ」、型変数記号
として「A,B,C, ...」、型演算子として「→」、補助記号として「), (, .」を用い
る。また以下で xは任意の変数記号ちょうど 1文字を表し、Aは任意の型変
数記号ちょうど 1文字を表す。

• λ式の定義　 L,M,N ::= x | λx.L | MN

• 型の定義　 α, β ::= A | α → β

• 簡約規則の定義　 (λx.M)N ▷β M[N/x]

ある λ式中の「▷β」の左辺の形をした部分式を可約部と呼ぶ。また左辺の

3

形の λ式を変形して右辺の形の λ式を得ることを β変換と呼ぶ。M[N/x]

という表現はM中の自由な xをすべて Nで置き換えた表現を表す。
• λ式型付け規則の定義

id
x : τ,Γ⊢ x : τ

Γ⊢ L : τ
wk

x : α,Γ⊢ L : τ

y : α, x : α,Γ⊢ L : τ
ctr

x : α,Γ⊢ L[x/y] : τ

x : α,Γ⊢ L : β
FUN

Γ⊢λx.L : α → β

Γ⊢M : α → β ∆⊢N : α
APP

Γ,∆⊢MN : β

「x1 : α1, ..., xn : αn ⊢ M : τ」(ただし 0 ≤ n) という表現は、「変数
x1, ..., xn の型がそれぞれ α1, ..., αn であるとき、λ 式 M の型は τ であ
る」という型判断を意味する。各規則は、「水平線の上の型判断が成り
立つとき、水平線の下の型判断が水平線の横に表示された λ式型付け規
則によって成り立つ」という意味である。また大文字のギリシア文字は
x1 : α1, ..., xn : αn(ただし 0 ≤ n)を表す。

ポイントは、定義により λx.M : α → βという λ式は「型 αの λ式が右から
入力として結合したら (すなわち N : αとして、(λx.M)Nという λ式が形成さ
れたら)型 βの λ式M[N/x]を出力として返すような関数」を表現しているとい
う点である。つまり、λ式型付け規則によって型を与えられる λ式は、まさに
その型が表す仕様通りの振る舞いをする関数となっているということである。
具体例をとろう。自然数および自然数上の後者関数を定め、後者関数の計算を
表現することを考えよう。自然数を定める一つのやり方は、型 natを nat ::=

(A → A) → (A → A)で定め、さらに型 natを持つ λ式を、y : A → A、x : A

として 0 ::≡ λy.λx.x、1 ::≡ λy.λx.yx、2 ::≡ λy.λx.y(yx)、...、n ::≡ λy.λx.y(

…(y(yx))…)と定めるというものである 2。さらにこれを踏まえ後者関数 suc

を、z : nat、y : A → A、x : Aとして suc ::≡ λz.λy.λx.y((zy)x)で定めれ
ば、型付き λ計算で後者関数の計算を実現できる。例えば suc0から 1を得
る計算は、suc0 ≡ (λz.λy.λx.y((zy)x))λy.λx.x ▷β λy.λx.y(((λy.λx.x)y)x) ▷β

λy.λx.y((λx.x)x) ▷β λy.λx.yx ≡ 1のようになる。重要な点は、natを上のよ
うに定義したときに、後者関数 sucに当たる λ式が意図した通り nat上の 1
変数関数となっていることが次の λ式型付け規則の連鎖的表現 (型付けの図式
と呼ばれる)によって保証されるということである。

id
y : A → A⊢ y : A → A

id
z : nat⊢ z : nat

id
y : A → A⊢ y : A → A

APP
z : nat, y : a⊢ zy : A → A

id
x : A⊢x : A

APP
z : nat, y : a, x : A⊢ (zy)x : A

APP
z : nat, y : a, x : A⊢ y((zy)x) : A

FUN
z : nat, y : a⊢λx.y((zy)x) : A → A

FUN
z : nat⊢λy.λx.y((zy)x) : nat

FUN⊢λz.λy.λx.y((zy)x) : nat → nat

4

型付けの図式はNJ-証明図とそっくりである。特に FUN とAPP の図式中
の型の配置は、それぞれ先ほどの証明図の ⊃導入則と ⊃除去則の図式の論
理式の配置と (書体の違いを無視し型演算子→と論理結合子⊃とを同一視す
れば)一致することがわかる。CH対応とは、型付けの図式と NJ-証明図の間
に見られる、この対応関係のことに他ならない（なお⊃以外の結合子につい
ても特定の演算子を計算体系に導入し型付け規則を定めて対応を与えること
ができる）[1][6]。ただしこの対応は単なる類比ではない。CH対応は、BHK
解釈によってNJの推論規則に見出される構成の概念と、型付き λ計算の型付
け規則の λ式形成手続き (すなわち素材となる λ式の構造を保存しながら型
の制約に則って新たな λ式を構築する手続き)が持つ構成の概念とが同型だと
いうことを明らかにしているのである [1][6]。NJ-証明図と対応する型付け図
式によって構築される λ式は、まさにその証明図の終式の結論の BHK解釈
の具体的な形式を与えていると捉えられるのである。ところで CH対応につ
いてもう一つポイントがある。察しの通り、実はGentzenの証明図は型付き λ

計算での β 変換と対応する証明図変形機構を備えている [1][4][6]。この変形
は―紙幅の都合によりここでは詳細を述べられないが、ともかく―余剰な推
論規則の適用箇所 (証明の回り道と呼ばれる)を除去し証明を正規化する操作
にあたる。NJ-証明図と対応する型付け図式によって構築される λ式は、BHK
解釈の体現であると同時に、証明の正規化の手順を与えているのである。3

さて近年、CH対応の「証明に対してその正規化手順を与える」という側
面を CLへと拡張する方法が明らかとなった。これを初めて定式化したのは
1990年の Griffinの論文 [5]である。ここで明らかとなったのは、型付き λ計
算に call/ccと呼ばれる継続呼び出し演算子を導入した拡張体系で構築される
式が、NK(詳しくは NKと同等な古典自然演繹)の正規化手順を与えるという
ことであった。
継続 (continuation)とは、ひとつの λ式のある 1箇所または 0箇所の可約
部に焦点を当てたときにその可約部にとっての背景となる (いわば無視され
る)、その λ式中のその可約部を除いた部分を指す概念である。「計算の残り
の部分」とも呼ばれる。たとえば、先の suc0を表す λ式の計算過程で現れ
た λ式 λy.λx.y(((λy.λx.x)y)x)について、λy.λx.y(((λy.λx.x)y

★
)x)の★で示した

可約部に焦点を当てたとき、λy.λx.y((︸ ︷︷ ︸
♡

(λy.λx.x)y
★

)x)︸︷︷︸
♡

の ♡で示した部分が★に

とっての継続である。λy.λx.y(((λy.λx.x)y)x)について、0箇所の可約部すな
わち式全体に焦点を当てたときは、空な表現がその可約部にとっての継続で
ある。簡約における可約部と継続の移り変わりは、先の suc0についての簡

5

約を例にとれば、︸︷︷︸
継続

(λz.λy.λx.y((zy)x))λy.λx.x
可約部

︸︷︷︸
継続

▷β λy.λx.y((︸ ︷︷ ︸
継続

(λy.λx.x)y
可約部

)x)︸︷︷︸
継続

▷β

λy.λx.y(︸ ︷︷ ︸
継続

(λx.x)x
可約部

)︸︷︷︸
継続

▷β ︸︷︷︸
継続

λy.λx.yx
(0 箇所の) 可約部

︸︷︷︸
継続

のようになる。さて継続呼び出しと

は、「焦点が当たっている可約部の内部の特定の継続表現をその可約部にとって
の継続で置き換える操作」に当たる。β変換が「あるλ式の内部の特定の変数を
その式に右から入力として結合している λ式で置き換える」操作であることを
踏まえると、継続呼び出しとは言わば β変換の裏返しである。つまり継続呼び
出しを含む計算とは、仕組みとしては、(λx.L)(︸ ︷︷ ︸

継続A

(λy.M)(...︸︷︷︸
継続B

N
可約部B

...︸︷︷︸
継続B

)

可約部A

)︸︷︷︸
継続A

とい

う形のλ式の可約部Aの内部の継続Bを継続Aで置き換えて (λy.M)((λx.L)N)

という λ式を得るような「計算の順序を変更するような計算」である。
つまるところ Griffinにより、CLの証明プロセスは、証明中の背景や文脈
に相当する部分の補足・制御を含むような、ILよりも複雑な証明正規化手順
を与える式についての―しかしそれが BHK解釈の体現とはなっていない式に
ついての―構築プロセスと対応付けられるということが明らかとなった。

3 筆者の主張
BHK解釈の条件が崩れている CLに対して上のような CH対応の拡張が与
えられるという事実は、次の見方を導くと筆者は考える。それは、まず ILに
ついての CH対応においては証明によって構築される λ式は、第一に BHK解
釈を体現し、第二に証明の正規化手順を与えるのであったが、実はこの二つ
のことが本来は別のことであり、そして CLの CH対応においては後者のみ
が実現している、という見方である。CLによって導出される論理式に対して
は、一方で確かに BHK解釈を与えることはできないのであるが、しかし他方
で構築される式が証明正規化手順を与えているという点では単なる二値性に
帰着できないような証明の構造に関する概念 4 をその表現内容としていると
見ることができよう。
さてGriffinによって明らかとなったのは、CLで導出される論理式が表現内
容としている事柄すなわち証明正規化手順の概念は、ILの証明正規化の際に
は扱われない証明の文脈・背景に対する操作を含んでいるという事実であった
が、さらに近年鮮明となってきたのは、その正規化手順が (ILでは失われてい
るような)対称性を備えているという事実である。特に、CLと CH対応する
体系であるWadler[8]の双対計算 (dual calculus)と Filinski[3]・浅井ら [11][9]
の対称 λ計算 (symmetric lambda calculus、以下 SLC)では、可約部とその操
作を定める構文的道具立てと、継続とその操作を定める構文的道具立てとが

6

すべて互いに対称的な形で与えられ、証明正規化手順を表現する式はそれら
対称な両者の結合表現として構築される。つまり、CLによって導出される論
理式が表現内容とする証明正規化手順には、ILにおいて扱われる証明に対す
る抽象／適用操作に加えて、これと対称的な証明の文脈・背景に対する抽象
／適用操作が組み込まれているという事実が鮮明となった。この対称性を如
何に解釈するかについては様々な余地があると考えられるが、一つのやり方
としては、CLにより導出される論理式は ILの BHK解釈的な内容とその双対
すなわち「ある論理式が反証についての諸仮定からどのような実効的手続き
を経て反証されたか」という BHK解釈の双対的内容を部分的に併せ持ってい
ると解釈することができるはずだと筆者は考える。そして特にこの点で、⊃
とその双対の機能を持つ結合子とさらにそれらについての両義性の機能を持
つ結合子の三者が組み込まれていることを特徴とする SLC[11][9]が構築する
式は、CLの証明プロセスが構築する証明正規化手順が証明の構造と反証の構
造の並存やそれらの間の相互作用をまさに表現していると筆者は考える。

4 今後の展望
SLCが構築する式の形を踏まえて、CLにより導出される論理式が表現す
る証明の構造に関する内容が BHK解釈的な意味とどのような隔たりを持っ
たものであるのかを明らかにし、そしてここで CLの命題が持つ本質的な概
念とは何かを特定することが今後の課題である。また筆者による研究の途上
ではあるが、SLCに対してある拡張―詳しくは〈継続 |関数 |項〉という構文
的構造の入れ子を許すという拡張―を行った体系 入れ子対称 λ計算 (nested
symmetric lambda calculus)は、これまで与えられていなかった SLCの述語論
理の CH対応への拡張を与えられる体系であると見込まれる。この体系の整
備を進め述語論理レベルの証明の分析も行う予定である。

注
1ここでは説明のしやすさの都合により、自然演繹を Gentzen[4]のオリジ

ナルの記法ではなくシーケントスタイルと呼ばれる記法によって表している。
2何故このような形の λ式によって自然数を定めることができるかについ

ては、[10]で論じられている。
3CH対応に対しては「論理の内実を計算が明らかにしている」という見方

と「計算の内実を論理が明らかにしている」という見方のいずれもが与えら
れると考えられるが、本稿では計算論理学の分野で広く認められる作業仮設
に従って前者の見方のみを取り上げて議論を進めている。

7

4Fregeや Fregeを踏まえているDummettであればこの概念を意義 (Sinn)と
呼ぶだろう。

文献
[1] Curry,H.B. and Feys,R. (1958) Combinatory Logic, Studies in Logic and the

Foundations of Mathematics, Vol.I, 1st edition, Amsterdam: North-Holland

[2] Dummett,M (1973) The Philosophical Basis of Intuitionistic Logic. Truth and
Other Enigmas, Cambridge: Harvard UP, 1978, pp.215-247

[3] Filinski,A (1989) Declarative continuations and categorical duality. Master’s
thesis, DIKU Seport 89/11, University of Copenhagen

[4] Gentzen,G (1935) Investigations into Logical Deduction. Mathematische
Zeitschrift 39，pp.176-210,405-431. Reprinted in M. E. Szabo, editor The
Collected Papers of Gerhard Gentzen, North-Holland, 1969

[5] Griffin,T (1990) A Formulae-as-Types Notion of Control. 17’th symposium
on Principles of Programming Languages (POPL’90), pp.47-58

[6] Howard,W.A. (1969) The Formulae-as-Types Notion of Construction. To
H.B.Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
Academic Press, pp.479-490

[7] Troelstra,A.S. (1991) History of constructivism in the twentieth century, ITLI
Prepublication series for Mathematical Logic and Foundations ML-91-05,
University of Amsterdam

[8] Wadler,P (2003) Call-by-value is dual to call-by-name. Proceedings of the
eighth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’03), pp.189–201

[9] 上田やよい、浅井健一 (2010)「型付き対称 λ計算と古典論理」第 12回
プログラミングおよびプログラミング言語ワークショップ論文集, pp.34-48

[10] 岡本 賢吾 (2003) 「命題を集合と同一視すること――包括原理からカ
リー＝ハワード対応へ」『科学哲学』第 36巻 2号, pp.103-118

[11] 阪上紗里、浅井健一 (2009)「対称 λ計算の基礎理論」『コンピュータ
ソフトウェア』 Vol.26 No. 2, pp.3-17

[12] マイケル・ダメット (1973)「直観主義論理の哲学的基底」藤田晋吾訳
(1986)『真理という謎』勁草書房 pp.212-266

（東京都立大学）

8

