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All this could seem clear, but the situation is, at least apparently,
complicated by the fact that such general results in L may be ob-
tained by verifications in some more extended language L’. There-
fore one may ask, is it really necessary to make any appeal to some
kind of intuition? Is it not possible to reduce mathematical theories,
thus also arithmetic to pure formalism??
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It is clear that the difference between the procedure set forth here
and that of the Hilbert school is that I recommend to set up formal
systems of arithmetic after having first seen by finitary reasoning
their consistency or in in other words their conservertive character,
whereas Hilbert’s system we first ignore the question of interpreta-
tion, i.e. first set up a formalism without interpretation and then try

L«Probably one can say that the possibility of finitization of a mathematical theory is a
criterion of its soundness [11]”
2[10], p.547.



afterwards to prove something called consistency. There are diverse
inconveniences by the latter procedure. First of all it has turned
out that in order to prove the consistency of a system we must use
considerations of a more difficult kind which seems to led us into
an infinite regress. Further, questions with regard to interpretation

arise which are really very difficult, if at all possible, to answer?.

googo

In my opinion propositions containing quantifiers ought only to be
introduced as a sort of abstraction of incomplete communication of
statements containing free variables only. --- Formal rules for the
treatment of expression with quantifiers must be so much restricted
that we never get outside such an interpretation?.
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[Poincaré] emphasizes that whereas any numerical proposition is
tested by the carrying out of a computation so that a proof of it
consists in a verification, the proof of a general theorem requires the
use of complete induction. °.
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According to S. C. Kleene this condition is fulfilled in intuitionistic
arithmetic. However, since it is well known that the proof of consis-
tency of intuitionistic arithmetic is not easier than that of classical
arithmetic, some stronger restriction must be required in order to
enable us to see in a finitary manner that we only get correct propo-
sitions or in other words a formal system having the conservative
property relative to [system] S, [and system] S’ [extending S, and
theory] 3, [and its extension] .
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3Skolem [10], p.551.
4Skolem [10], pp.551-552.
5Skolem [10], p.545.
6Skolem [10], p.552.



000000000 elementary functions 0000000000 O0O00OOO
oooooo

1. Bounded sum and product
2. Zero-function

. Successor

. Projection

. Addition

3
4
5
6. Multiplication
7. Modified subtraction
|
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Eo(z,y) = z+y

Eq(x) = 22+2

En+2 (0) = 2

Eppa(z+1) = Epp1(Enia(r))

Grzegorczhyk OO OOODOOOOODODOOO:n>10000,

E,(z) > x+1
E.(x+1) > Ey(z)
By (2) > Ep(z)
E;(x) < Eppi(z+1)

000 El(z)0 t0 E,(2) 00000000
Grzegorczyk 00 £€° 00000000000000000000000O
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1. The 0 function

2. Successor function

3. Projection functions

4. 0000O0O0Oooooooooa

(a) Composition

(b) Limited recursion
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